3-channel 75Ω driver BA7660FS

The BA7660FS is a 75Ω driver with a 6 dB amplifier and three internal circuits, and provides 75Ω drive of composite Y signals and C signals, as well as RGB signals. Each load is capable of driving two circuits, and a sag correction function reduces the capacitance of the output coupling capacitor.
The input voltage is within a range of 0 V to 1.5 V , enabling direct connection of ordinary D / A converter output. An internal power-saving circuit is also included which provides simultaneous muting on all three channels, and output pin shorting protection.

- Applications

DVDs, set top boxes and other digital video devices

- Features

1) Can be coupled directly to D / A converter output.
2) Operates at a low power consumption (115mW typ.).
3) Internal output muting circuit.
4) Internal power-saving circuit.
5) Internal output protection circuit.
6) An internal sag correction function makes it possible to reduce the capacitance of the output coupling capacitor.
7) Each load is capable of driving two circuits.
8) The compact 16-pin SSOP-A package is used.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	8	V
Power dissipation	Pd	650	mW
Operating temperature	Topr	$-25 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

-Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Operating power supply voltage	Vcc	4.5	5.0	5.5	V

- Block diagram

- Pin descriptions and input / output circuits

Pin. No	Pin name	IN	OUT	Reference voltage	Equivalent circuit	Function
1	MUTE	\bigcirc	-	-		Muting control If MUTE (pin 1) is set to HIGH, muting is carried out simultaneously on all three channels.
$\begin{aligned} & 2 \\ & 4 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { INA } \\ & \text { INB } \\ & \text { INC } \end{aligned}$	\bigcirc	-	-		Signal input Input signals consist of composite video signals, Y signals, C signals, RGB, and others. The input level is within a range of 0 to 1.3 (min.) to 1.5 (typ.).
$\begin{aligned} & 3 \\ & 5 \\ & 8 \end{aligned}$	GND	-	-	OV		Ground
$\begin{gathered} 14 \\ 12 \\ 9 \\ 15 \\ 13 \\ 10 \end{gathered}$	OUTA2 OUTB2 OUTC2 OUTA1 OUTB1 OUTC1	-	\bigcirc	$0.9 \mathrm{~V}$ $0.95 \mathrm{~V}$		Signal output The signal output level is $(0.9+2 \times$ input voltage [V]). Pins 9, 12, and 14 are the pins for sag correction. If pins 10,13 , and 15 are set to 0.2 V or less, the protective circuit is triggered and the power-saving mode is accessed.
16	Vcc	-	-	5.0 V	${ }^{-v_{c c}}$	Power supply

- Electrical characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Circuit current	Icc	11.4	22.8	34.2	mA	With no signal
Maximum output level	Vom	2.6	3.0	-	Vp.p	$\mathrm{f}=1 \mathrm{kHz}$, THD $=1 \%$
Voltage gain	Gv	5.5	6.0	6.5	dB	$\mathrm{f}=4.43 \mathrm{MHz}, 1 \mathrm{~V}$ P. P
Frequency characteristic	Gf	-1.0	0.0	1.0	dB	$\mathrm{f}=7 \mathrm{MHz} / 1 \mathrm{MHz}, 1 \mathrm{VP}$. p
Muting attenuation	MT	-	- 60	-	dB	$\mathrm{f}=4.43 \mathrm{MHz}, 1 \mathrm{~V}$ P. P
Muting switching level HIGH	$\mathrm{V}_{\text {тн }}$	3.5	-	Vcc	V	-
Muting switching level LOW	$V_{\text {тHL }}$	0	-	1.0	V	-

Guaranteed design parameters (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Differential gain	DG	-	0.5	1.5	\%	1.0VP-P reference staircase signal
Differential phase	DP	-	0.5	1.5	deg	1.0VP-p reference staircase signal
Interchannel crosstalk	C_{\top}	-	-60	- 55	dB	$\mathrm{f}=4.43 \mathrm{MHz}, 1 \mathrm{VP}-\mathrm{P}$
Interchannel voltage gain differential	$\Delta \mathrm{Gv}$	- 0.5	0.0	0.5	dB	$\mathrm{f}=4.43 \mathrm{MHz}, 1 \mathrm{VP-P}$

- Measurement circuit

- Measurement condition settings table

Item		Symbol	Switch conditions					Measurement method	
		SW ${ }_{1}$	SW2	SW_{4}	SW_{7}	SW16			
Circuit current			Icc	2	1	1	1	1	Note 1
Maximum output level	OUTA OUTB OUTC	Vom1 Vом2 Vомз	3	2	1	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	Note 2	
Voltage gain	OUTA OUTB OUTC	Gv1 Gv2 Gv3	3	2	1	1	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	Note 3	
Frequency characteristics	OUTA OUTB OUTC	$\mathrm{G}_{\mathrm{F} 1}$ GF2 GF3	3	2	1	1	2	Note 4	
Crosstalk between channels	OUTA \rightarrow OUTB OUTA \rightarrow OUTC OUTB \rightarrow OUTA OUTB \rightarrow OUTC OUTC \rightarrow OUTA OUTC \rightarrow OUTB	$\mathrm{C}_{\mathrm{T} 1}$ Cт2 Стз CT4 Ct5 Ст6	3	2	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	Note 5	
Muting attenuation	OUTA OUTB OUTC	$M_{T 1}$ MT2 Мтз	1	2	1	1	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	Note 6	

* The muting switching level is substituted by carrying out the above measurement at High $=3.3 \mathrm{~V}$, Low $=1.2 \mathrm{~V}$.

Note 1: Measure the circuit current when no signal is present.
Note 2: Apply a sine wave of $f=1 \mathrm{kHz}$ to the input, and adjust the input level so that the output distortion is 1%. At this time, set the output voltage to the maximum output level of $\mathrm{Vom}_{\text {[}}$ [$\mathrm{V}_{\text {p-p] }}$].
Note 3: Measure the output $V_{0}\left[V_{P-p}\right]$ with a sine wave of $f=4.43 \mathrm{MHz}$, 1 Vp-p applied to the input. Voltage gain $G v$ is:
$\mathrm{G} v=20 \log \left(\mathrm{~V}_{\mathrm{o}} / \mathrm{Vin}\right)[\mathrm{dB}]$
Note 4: Measure the outputs $V_{0} 7$ and $V_{0} 1$ [Vp-p] each with sine waves of $\mathrm{f}=7 \mathrm{MHz}, 1 \mathrm{Vp-p}$ and $\mathrm{f}=1 \mathrm{MHz}, 1 \mathrm{Vp-p}$ applied to the input. Voltage frequency GF_{F} is:
$\mathrm{G}_{\mathrm{F}}=20 \log \left(\mathrm{~V}_{07} / \mathrm{V}_{01}\right)[\mathrm{dB}]$

Note 5: Measure the output V_{0} [Vp-p] with a sine wave of $f=4.43 \mathrm{MHz}$, $1 \mathrm{VP}-\mathrm{P}$ applied to the input. Interchannel crosstalk C_{T} is: $\mathrm{C} \mathrm{T}=20 \log (\mathrm{Vo} / \mathrm{Vin})[\mathrm{dB}]$
Note 6: Measure the output $V_{0}\left[V_{p-p}\right]$ with a sine wave of $f=4.43 \mathrm{MHz}$,
1 V P-P applied to the input. The muting attenuation M_{T} is:
$\mathrm{M}_{\mathrm{T}}=20$ * Log (Vo/Vin) [dB]

- Application example

- External dimensions (Units: mm)

